Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339607

RESUMO

In response to the challenge of small and imbalanced Datasets, where the total Sample size is limited and healthy Samples significantly outweigh faulty ones, we propose a diagnostic framework designed to tackle Class imbalance, denoted as the Dual-Stream Adaptive Deep Residual Shrinkage Vision Transformer with Interclass-Intraclass Rebalancing Loss (DSADRSViT-IIRL). Firstly, to address the issue of limited Sample quantity, we incorporated the Dual-Stream Adaptive Deep Residual Shrinkage Block (DSA-DRSB) into the Vision Transformer (ViT) architecture, creating a DSA-DRSB that adaptively removes redundant signal information based on the input data characteristics. This enhancement enables the model to focus on the Global receptive field while capturing crucial local fault discrimination features from the extremely limited Samples. Furthermore, to tackle the problem of a significant Class imbalance in long-tailed Datasets, we designed an Interclass-Intraclass Rebalancing Loss (IIRL), which decouples the contributions of the Intraclass and Interclass Samples during training, thus promoting the stable convergence of the model. Finally, we conducted experiments on the Laboratory and CWRU bearing Datasets, validating the superiority of the DSADRSViT-IIRL algorithm in handling Class imbalance within mixed-load Datasets.

2.
Stem Cells Int ; 2023: 8282961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197688

RESUMO

Chronic refractory wounds (CRW) are one of the most serious clinical challenges for surgeons to address. Stromal vascular fraction gels (SVFG), including human adipose stem cells (hASCs), have excellent vascular regenerative and tissue repair properties. Here, we combined single-cell RNA sequencing (scRNA-seq) of leg subcutaneous adipose tissue samples with scRNA-seq data from abdominal subcutaneous adipose tissue, leg subcutaneous adipose tissue, and visceral adipose tissue samples from public databases. The results showed specific differences in cellular levels in adipose tissue from different anatomical site sources. We identified cells including CD4+ T cells, hASCs, adipocyte (APC), epithelial (Ep) cells, and preadipocyte. In particular, the dynamics between groups of hASCs, epithelial cells, APCs, and precursor cells in adipose tissue of different anatomical site origins were more significant. Furthermore, our analysis reveals alterations at the cellular level and molecular level, as well as the biological signaling pathways involved in these subpopulations of cells with specific alterations. In particular, certain subpopulations of hASCs have higher cell stemness, which may be related to lipogenic differentiation capacity and may be beneficial in promoting CRW treatment and healing. In general, our study captures a human single-cell transcriptome profile across adipose depots, the cell type identification and analysis of which may help dissect the function and role of cells with specific alterations present in adipose tissue and may provide new ideas and approaches for the treatment of CRW in the clinical setting.

3.
Ann Transl Med ; 11(5): 210, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37007553

RESUMO

Background: Diabetic foot ulcer (DFU) is one of the common and severe complications in diabetic patients, mainly caused by the interaction of various factors such as peripheral neuropathy, peripheral vascular disease, and infection. Moreover, vascular damage, disorder of tissue cells, decreased expression level of neurotrophic factor, and decreased growth factor caused by long-term exposure to a high glucose environment can also lead to prolonged or incomplete wound healing. This imposes a tremendous financial burden on the patients' family and society. Although various innovative techniques and drugs have been developed to treat DFU, the therapeutic effect is still unsatisfactory. Methods: We filtered and downloaded the single-cell dataset of diabetic patients from the Gene Expression Omnibus (GEO) website and used the Seurat package in R for creation of single-cell objects, integration, control of quality, clustering, cell type identification, differential gene analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and intercellular communication analysis. Results: Diabetic healing-related differentially expressed gene (DEG) analysis showed that there were 1,948 differential genes between tissue stem cells in healing and non-healing wounds, of which 1,198 genes were up-regulated and 685 genes were down-regulated. The results of GO functional enrichment analysis in tissue stem cells showed that they were closely related to wound healing. The CCL2-ACKR1 signaling pathway activity in tissue stem cells influenced the biological activity of endothelial cell subpopulation, which ultimately promoted the healing of DFU wounds. Conclusions: The CCL2-ACKR1 axis is closely associated with DFU healing.

4.
Database (Oxford) ; 20212021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34296748

RESUMO

Accumulated evidence suggests that the widely expressed long-non-coding RNAs (lncRNAs) are involved in biogenesis. Some aberrant lncRNAs are closely related to pathological changes, for instance, in cancer. Both in tumorigenesis and cancer progression, depending on the interplay with cellular molecules, lncRNAs can modulate transcriptional interference, chromatin remodeling, post-translational regulation and protein modification, and further interfere with signaling pathways. Aiming to the diagnosis/ prognosis markers or potential therapeutical targets, it is important to figure out the specific mechanism and the tissue-specific expressing patterns of lncRNAs. Generally, the bioinformatics analysis is the first step. More and more in silico databases are increasing. But the existing integrative online platforms' functions are not only having their unique features but also share some common features, which may lead to a waste of time for researchers. Here, we reviewed these web tools according to the functions. For each database, we clarified the data source, analysis method and the evidence that the analysis result is derived from. This review also illustrated examples in practical use for a specific lncRNA by these web tools. It will provide convenience for researchers to quickly choose the appropriate bioinformatics web tools in oncology studies.


Assuntos
Neoplasias , RNA Longo não Codificante , Biologia Computacional , Humanos , Neoplasias/genética , Processamento de Proteína Pós-Traducional , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
5.
Aging (Albany NY) ; 12(14): 14365-14375, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680978

RESUMO

More and more findings illustrate the critical roles of circular RNA (circRNA) in diabetes mellitus (DM) and its complications. A major pathological characteristic for DM is the apoptosis of endothelial cells (ECs) induced by high glucose (HG), however, the function of circRNA in the ECs' phenotypes is still elusive. Here, this study identified an up-regulated circRNA (circVEGFC) in the HG-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of circVEGFC alleviated the apoptosis and recovered the proliferation in HUVECs induced by HG administration. Mechanistically, circVEGFC functioned as the sponge of miR-338-3p, and miR-338-3p was found to target the 3'-Untranslated Regions (3'-UTR) of hypoxia inducible factor 1 alpha (HIF-1α). HIF-1α, a critical transcription factor in DM, could activate the transcription of vascular endothelial growth factor A (VEGFA) and promote its protein product. In conclusion, these findings reveal the promotion of circVEGFC/miR-338-3p/HIF-1α/VEGFA axis in the HG-induced ECs' apoptosis, providing a potential treatment strategy for ECs' damage in DM.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Glucose/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , RNA Circular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Regulação para Cima/genética
6.
Oncotarget ; 8(40): 68542-68556, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978136

RESUMO

Traditional autologous fat transplantation is a common surgical procedure for treating facial soft tissue depression and skin aging. However, the transplanted fat is easily absorbed, reducing the long-term efficacy of the procedure. Here, we examined the efficacy of nanofat-assisted autologous fat structural transplantation. Nanofat-derived stem cells (NFSCs) were isolated, mechanically emulsified, cultured, and characterized. Platelet-rich fibrin (PRF) enhanced proliferation and adipogenic differentiation of NFSCs in vitro. We then compared 62 test group patients with soft tissue depression or signs of aging who underwent combined nanofat, PRF, and autologous fat structural transplantation to control patients (77 cases) who underwent traditional autologous fat transplantation. Facial soft tissue depression symptoms and skin texture were improved to a greater extent after nanofat transplants than after traditional transplants, and the nanofat group had an overall satisfaction rate above 90%. These data suggest that NFSCs function similarly to mesenchymal stem cells and share many of the biological characteristics of traditional fat stem cell cultures. Transplants that combine newly-isolated nanofat, which has a rich stromal vascular fraction (SVF), with PRF and autologous structural fat granules may therefore be a safe, highly-effective, and long-lasting method for remodeling facial contours and rejuvenating the skin.

7.
J Phys Ther Sci ; 28(1): 118-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26957741

RESUMO

[Purpose] This study evaluated the effects of topical oxygen therapy on the hind limb wounds of rats under ischemic conditions. [Subjects and Methods] Twelve injured rats were treated with topical oxygen on skin wounds located on the hind limb and compared with twelve injured control rats. Indexes including gross morphology of the wound, wound healing time, wound healing rate, and histological and immunohistochemical staining of sections of wound tissue were examined at different time points after intervention. [Results] The wound healing time was shorter in the topical oxygen therapy group than the control group. The wound healing rate and granulation tissue formation in the topical oxygen therapy group showed significant improvement on days 3, 7, and 14. Through van Gieson staining, the accumulation of collagen fiber in the topical oxygen therapy group was found to have improved when compared with the control group on day 7. Through semiquantitative immunohistochemical staining, many more new vessels were found in the topical oxygen therapy group compared with the model control group on day 7. [Conclusion] The results of the experiment showed that topical oxygen therapy improved ischemic wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...